Главная | Регистрация | Вход | RSSЧетверг, 02.05.2024, 22:18

Математика для детей дошкольного и школьного возраста

Меню сайта
Категории раздела
Контрольная работа
Школьникам
Олимпиада
Дошкольникам
Конспекты
Игры
Уголки
Статистика

Онлайн всего: 1
Гостей: 1
Пользователей: 0
Главная » 2016 » Январь » 12 » Олимпиада по математике 9 класс школьный тур с ответами
15:07
Олимпиада по математике 9 класс школьный тур с ответами

Все трехзначные числа записаны в ряд: 100 101 102 … 998 999. Сколько раз в этом ряду после двойки идет нуль?

По определению, n ! = 1 · 2 · 3 · … · n . Какой сомножитель нужно вычеркнуть из произведения 1! · 2! · 3! · … · 20!, чтобы оставшееся произведение стало квадратом некоторого натурального числа?

С помощью циркуля и линейки разделите пополам угол, вершина которого недоступна.

Сколько существует треугольников со сторонами 5 см и 6 см, один из углов которого равен 20°?

На столе лежат 2005 монет. Двое играют в следующую игру: ходят по очереди; за ход первый может взять со стола любое нечетное число монет от 1 до 99, второй – любое четное число монет от 2 до 100. Проигрывает тот, кто не сможет сделать ход. Кто выиграет при правильной игре?

Ответы и решения задач варианта №1

Так как трехзначное число не может начинаться с нуля, то двойка, после которой идет нуль, не может стоять в разряде единиц одного из трехзначных чисел ряда. Пусть двойка стоит в разряде десятков трехзначного числа. Тогда идущий за ней нуль стоит в разряде единиц того же числа, т.е. это число оканчивается на 20. Таких чисел 9: 120, 220, …, 920. Наконец, если двойка, после которой идет нуль, стоит в разряде сотен, то соответствующее трехзначное число начинается на 20. Таких чисел 10: 200, 201, …, 209. Таким образом, всего после двойки нуль будет встречаться 19 раз.

Заметим, что1! · 2! · 3! · 4! ·…· 20! = (1! · 2!) · (3! · 4!) ·…· (19! · 20!) =
= (1! · 1! · 2) · (3! · 3! · 4) · (5! · 5! · 6) ·…· (17! · 17! · 18) · (19! · 19! · 20) =
= (1!)2 · (3!)2 · (5!)2 ·…· (19!)2 · (2 · 4 · 6 · 8 ·…· 18 · 20) =
= (1!)2 · (3!)2 · (5!)2 ·…· (19!)2 · (2 · (2 · 2) · (3 · 2) ·…· (10 · 2)) =
= (1! · 3! ·…· 19!)2 · 210 · (1 · 2 · 3 ·…· 2 · 10) = (1! · 3! ·…· 19!)2 (25)2 · 10!

Мы видим, что первые два множителя – квадраты, поэтому, если вычеркнуть 10!, то останется квадрат. Легко видеть, что вычеркивание других множителей, указанных в ответах, не дает желаемого результата.

Ответ: 10!

Задача имеет множество решений. Рассмотрим один из них. Выберем на сторонах угла произвольно по 2 точки: A, N, B, M и рассмотрим треугольники АВС и NМС. Проведем в каждом из этих треугольников биссектрисы углов. Точка пересечения биссектрис углов треугольника АВС принадлежит и биссектрисе угла С. Аналогично, точка пересечения 2 биссектрис углов треугольника NМС также лежит на биссектрисе угла С. Проводим через эти 2 точки прямую, которая будет и биссектрисой ﮮС.

Есть только один треугольник, в котором угол 20° лежит между сторонами 5 см и 6 см. Попробуем построить треугольник, в котором сторона 6 см прилегает к углу 20°, а сторона 5 см лежит против него. Для этого от вершины угла отложим отрезок длиной 6 см, и проведем окружность радиуса 5 см с центром этого отрезка, не совпадающем с вершиной. Расстояние от центра этой окружность до второй стороны угла меньше 5 см (это расстояние равно катету угла в 20°). Отсюда следует, что окружность пересечет прямую, содержащую вторую сторону угла, в двух точках, причем из-за того что радиус меньше 6 см, обе эти точки будут лежать на стороне угла, и мы получим два разных треугольника.

Если же попробовать поменять ролями отрезки в 5 см и 6 см, то вершина угла окажется внутри построенной окружности, и мы получим только одну точку пересечения, а следовательно, и один треугольник.

Итак, мы получили всего 4 треугольника.

Опишем стратегию первого игрока. Первым ходом он должен взять со стола 85 монет. Каждым следующим, если второй игрок берет х монет, то первый игрок должен взять 101 – х монет (он всегда может это сделать, потому что если х – четное число от 2 до 100, то (101 – х) – нечетное число от 1 до 99). Так как 2005=101· 19 + 85 + 1, то через 19 таких «ответов» после хода первого на столе останется 1 монета, и второй не сможет сделать ход, т. е. проиграет.
Категория: Олимпиада | Просмотров: 1150 | | Рейтинг: 0.0/0
Добавлять комментарии могут только зарегистрированные пользователи.
[ Регистрация | Вход ]
Форма входа
Календарь
«  Январь 2016  »
ПнВтСрЧтПтСбВс
    123
45678910
11121314151617
18192021222324
25262728293031

Copyright MyCorp © 2024
Сделать бесплатный сайт с uCoz